SOME PROBLEMS ON CONTINUOUS FUNCTION OF A SINGLE REAL VARIABLE AND OF REAL VALUED

July 1, 2020

- 01. Let $f:[0,1] \to R$ be a differential function such that f(0) = 0 and f(1) = 1. Show that there exists $a, b \in (0,1)$ with $a \neq b$ such that $\frac{1}{f'(a)} + \frac{1}{f'(b)} = 2$.
- 02. If $f: [-1,1] \to R$ is continuous function, then show that there exists $c \in [-1,1]$ such that $|f(c)| = \frac{1}{4}(|f(-1)| + 2|f(0)| + |f(1)|)$.
- *03.* Statement: "There exists a continuous function $f:[1,2] \rightarrow R$ which is differential on (0,1) but not differential at the points 0 and 1." Justify the statement.
- 04. Let $f: A \to R$ and $g: B \to R$ where f(A) ⊂ B. If f is continuous at c ∈ A and g is continuous at f(c) ∈ B, then prove that $g_o f$ is continuous at c.
- **05.** Let $f: A \to R$ and $g: B \to R$ where $f(A) \subset B$. If f is continuous on A and g is continuous on B, then prove that $g_o f$ is continuous on A.
- **06.** A function $f: R \to R$ is continuous on R and f(x) = 0, $\forall x \in Q$. Prove that f(x) = 0 for all $x \in R$.
- 07. A function $f: R \to R$ satisfies the condition f(x + y) = f(x)f(y) for all $x, y \in R$. If f is continuous at x = 0, prove that the function f is continuous on R.
- *08.* A function $f: R \to R$ satisfies the condition f(x + y) = f(x) + f(y) for all $x, y \in R$. If f is continuous at one point $c \in R$, prove that the function f is continuous at every point in R.
- **09.** A function $f: R \to R$ is continuous on R and $f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$ for all $x, y \in R$. Prove that f(x) = ax + b, $(a, b \in R)$ for all $x, y \in R$.
- *10.* Let $f: (-1,1) \to R$ be continuous at x = 0. If $f(x) = f(x^2)$ for all $x, y \in (-1,1)$, prove that f(x) = f(0) for all $x, y \in (-1,1)$.
- 11. A function $f: R \to R$ is continuous on R and f(x + y) = f(x) + f(y) for all $x, y \in R$. If f(1) = k prove that f(x) = kx for all $x \in R$. [k is a real constant]
- 12. A function $f: R \to R$ is continuous on R and f(x + y) = f(x)f(y) for all $x, y \in R$. Prove that either f(x) = 0 or $f(x) = a^x$ for all $x \in R$, where a is some positive real number.
- 13. Let $f:[a,b] \to R$ be strictly increasing. Show that the inverse function f^{-1} exists and strictly increasing on $[\alpha,\beta]$ where $\alpha = f(\alpha)$ and $\beta = f(b)$. If further, the function f is continuous on $[\alpha, \beta]$ show that f^{-1} is also continuous on $[\alpha, \beta]$.
- 14. Prove that the image of a closed interval under a continuous function $f: R \to R$ is a closed interval.
- 15. Let $f:[a,b] \to [a,b]$ be a continuous function. Prove that there exists at least one point $c \in [a,b]$ such that f(c) = c.
- 16. Let $f:[a,b] \to R$ be a continuous function. Prove that there exists a point $c \in (a,b)$ such that $f(c) = \frac{f(a)+f(b)}{c}$.
- 17. Sum of two discontinuous functions
 - *a.* is a discontinuous function.
 - **b.** may not be a discontinuous function.

Which of the above two statements is true? Support your answer with appropriate reason.

SOME PROBLEMS ON CONTINUOUS FUNCTION OF A SINGLE REAL VARIABLE AND OF REAL VALUED

July 1, 2020

- *18.* Let $f:[a,b] \to R$ be a continuous function and it assumes each value between f(a) and f(b) just once. Prove that the function f is strictly monotone on [a, b].
- 19. A function $f:[a,b] \to R$ is continuous on [a,b] and $x_1, x_2, x_3 \in [a,b]$. Prove that there exists a point $c \in [a,b]$ such that $f(c) = \frac{f(x_1) + f(x_2) + f(x_3)}{3}$.
- 20. A function $f:[a,b] \to R$ is continuous on [a,b] and $x_1, x_2, x_3, \dots, x_n \in [a,b]$. Prove that there exists a point $c \in [a,b]$ such that $f(c) = \frac{f(x_1) + f(x_2) + f(x_3) + \dots + f(x_n)}{n}$.
- 21. Let $f:[a,b] \to R$, $g:[a,b] \to R$ be continuous functions on [a,b] having the same range [0,1]. Prove that there exists a point $c \in [a,b]$ such that f(c) = g(c).
- 22. Prove that if $f: R \to R$ and $g: R \to R$ are continuous functions and f(a) < g(a) at some point $a \in R$, then *a* has a neighbourhood where f(x) < g(x) for all *x* belongs to the neighbourhood.
- 23. Does the continuity of the function $g(x) = f(x^2)$ implies the continuity of the function f(x)? Justify your answer with proper arguments.
- 24. Assume that the function $g(x) = \lim_{t \to x} f(t)$ exists for all $x \in R$. Prove that g(x) is a continuous function.
- **25.** Suppose that $f: R \to R$ is continuous and $f(n, a) \to 0$ for all a > 0. Prove that $\lim_{x\to\infty} f = 0$.
- 26. A function $f: R \to R$ satisfies f(x + y) = f(x) + f(y) for all $x, y \in R$. If the function f is continuous at some point $c \in R$ prove that the function f is uniformly continuous on R.
- 27. Let *A* be a non empty subset of *R*. A function $f: R \to R$ is defined by $f_A(x) = inf\{|x a|: a \in A\}$. Prove that the function f_A is uniformly continuous on *R*.
- 28. Let $c \in R$ and a function $f: R \to R$ is continuous at c. If for every positive δ there is appoint $y \in (c \delta, c + \delta)$ such that f(y) = 0, prove that f(c) = 0.
- 29. Let $f: R \to R$ be continuous on R and let $c \in R$ such that $f(c) > \mu$. Prove that there exists a neighbourhood U of c such that $f(x) > \mu$ for all $x \in U$.
- 30. Let a function $f: R \to R$ be continuous on R. Prove that the set $Z(f) = \{x \in R: f(x) = 0\}$ is a closed set in R. Give an example of a function f continuous on R such that
 - a. Z(f) is a bounded enumerable set
 - b. Z(f) is an unbounded enumerable set
- 31. Let a function $f: R \to R$ be continuous on R. A point $c \in R$ is said to be a fixed point of f if f(c) = c holds. Prove that the set of all fixed points of the function f is a closed set.
- 32. Let I = [a, b] be a closed and bounded interval and a function $f: I \to R$ be continuous on I and f(x) > 0 for all $x \in I$. Prove that there exists a positive number α such that $f(x) \ge \alpha$ for all $x \in I$.
- *33.* A function $f:[0,1] \rightarrow R$ is continuous on [0,1] and the function assumes only rational values on [0,1]. Prove that the function *f* is a constant function.
- 34. Let $f:[0,2] \to R$ be continuous and f(0) = f(2). Prove that there exists at least a point $c \in [0,1]$ such that f(c) = f(c+1).
