July 1, 2020

1. Let $f:[0,1] \rightarrow R$ be a differential function such that $f(0)=0$ and $f(1)=1$. Show that there exists $a, b \in(0,1)$ with $a \neq b$ such that $\frac{1}{f^{\prime}(a)}+\frac{1}{f^{\prime}(b)}=2$.
2. If $f:[-1,1] \rightarrow R$ is continuous function, then show that there exists $c \in[-1,1]$ such that $|f(c)|=$ $\frac{1}{4}(|f(-1)|+2|f(0)|+|f(1)|)$.
3. Statement: "There exists a continuous function $f:[1,2] \rightarrow R$ which is differential on $(0,1)$ but not differential at the points 0 and 1." Justify the statement.
4. Let $f: A \rightarrow R$ and $g: B \rightarrow R$ where $f(A) \subset B$. If f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then prove that $g_{o} f$ is continuous at c.
5. Let $f: A \rightarrow R$ and $g: B \rightarrow R$ where $f(A) \subset B$. If f is continuous on A and g is continuous on B, then prove that $g_{o} f$ is continuous on A.
6. A function $f: R \rightarrow R$ is continuous on R and $f(x)=0, \forall x \in Q$. Prove that $f(x)=0$ for all $x \in R$.
7. A function $f: R \rightarrow R$ satisfies the condition $f(x+y)=f(x) f(y)$ for all $x, y \in R$. If f is continuous at $x=0$, prove that the function f is continuous on R.
8. A function $f: R \rightarrow R$ satisfies the condition $f(x+y)=f(x)+f(y)$ for all $x, y \in R$. If f is continuous at one point $c \in R$, prove that the function f is continuous at every point in R.
9. A function $f: R \rightarrow R$ is continuous on R and $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$ for all $x, y \in R$. Prove that $f(x)=$ $a x+b,(a, b \in R)$ for all $x, y \in R$.
10. Let $f:(-1,1) \rightarrow R$ be continuous at $x=0$. If $f(x)=f\left(x^{2}\right)$ for all $x, y \in(-1,1)$, prove that $f(x)=$ $f(0)$ for all $x, y \in(-1,1)$.
11. A function $f: R \rightarrow R$ is continuous on R and $f(x+y)=f(x)+f(y)$ for all $x, y \in R$. If $f(1)=k$ prove that $f(x)=k x$ for all $x \in R$. [k is a real constant]
12. A function $f: R \rightarrow R$ is continuous on R and $f(x+y)=f(x) f(y)$ for all $x, y \in R$. Prove that either $f(x)=0$ or $f(x)=a^{x}$ for all $x \in R$, where a is some positive real number.
13. Let $f:[a, b] \rightarrow R$ be strictly increasing. Show that the inverse function f^{-1} exists and strictly increasing on $[\alpha, \beta]$ where $\alpha=f(a)$ and $\beta=f(b)$. If further, the function f is continuous on $[a, b]$ show that f^{-1} is also continuous on $[\alpha, \beta]$.
14. Prove that the image of a closed interval under a continuous function $f: R \rightarrow R$ is a closed interval.
15. Let $f:[a, b] \rightarrow[a, b]$ be a continuous function. Prove that there exists at least one point $c \in[a, b]$ such that $f(c)=c$.
16. Let $f:[a, b] \rightarrow R$ be a continuous function. Prove that there exists a point $c \in(a, b)$ such that $f(c)=$ $\frac{f(a)+f(b)}{2}$.
17. Sum of two discontinuous functions -
a. is a discontinuous function.
b. may not be a discontinuous function.

Which of the above two statements is true? Support your answer with appropriate reason.

July 1, 2020

18. Let $f:[a, b] \rightarrow R$ be a continuous function and it assumes each value between $f(a)$ and $f(b)$ just once. Prove that the function f is strictly monotone on $[a, b]$.
19. A function $f:[a, b] \rightarrow R$ is continuous on $[a, b]$ and $x_{1}, x_{2}, x_{3} \in[a, b]$. Prove that there exists a point $c \in[a, b]$ such that $f(c)=\frac{f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)}{3}$.
20. A function $f:[a, b] \rightarrow R$ is continuous on $[a, b]$ and $x_{1}, x_{2}, x_{3}, \ldots \ldots x_{n} \in[a, b]$. Prove that there exists a point $c \in[a, b]$ such that $f(c)=\frac{f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+\cdots \ldots+f\left(x_{n}\right)}{n}$.
21. Let $f:[a, b] \rightarrow R, g:[a, b] \rightarrow R$ be continuous functions on $[a, b]$ having the same range $[0,1]$. Prove that there exists a point $c \in[a, b]$ such that $f(c)=g(c)$.
22. Prove that if $f: R \rightarrow R$ and $g: R \rightarrow R$ are continuous functions and $f(a)<g(a)$ at some point $a \in R$, then a has a neighbourhood where $f(x)<g(x)$ for all x belongs to the neighbourhood.
23. Does the continuity of the function $g(x)=f\left(x^{2}\right)$ implies the continuity of the function $f(x)$? Justify your answer with proper arguments.
24. Assume that the function $g(x)=\lim _{t \rightarrow x} f(t)$ exists for all $x \in R$. Prove that $g(x)$ is a continuous function.
25. Suppose that $f: R \rightarrow R$ is continuous and $f(n . a) \rightarrow 0$ for all $a>0$. Prove that $\lim _{x \rightarrow \infty} f=0$.
26. A function $f: R \rightarrow R$ satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in R$. If the function f is continuous at some point $c \in R$ prove that the function f is uniformly continuous on R.
27. Let A be a non - empty subset of R. A function $f: R \rightarrow R$ is defined by $f_{A}(x)=\inf \{|x-a|: a \in A\}$. Prove that the function f_{A} is uniformly continuous on R.
28. Let $c \in R$ and a function $f: R \rightarrow R$ is continuous at c. If for every positive δ there is appoint $y \in$ $(c-\delta, c+\delta)$ such that $f(y)=0$, prove that $f(c)=0$.
29. Let $f: R \rightarrow R$ be continuous on R and let $c \in R$ such that $f(c)>\mu$. Prove that there exists a neighbourhood U of c such that $f(x)>\mu$ for all $x \in U$.
30. Let a function $f: R \rightarrow R$ be continuous on R. Prove that the set $Z(f)=\{x \in R: f(x)=0\}$ is a closed set in R. Give an example of a function f continuous on R such that -
a. $\quad Z(f)$ is a bounded enumerable set
b. $\quad Z(f)$ is an unbounded enumerable set
31. Let a function $f: R \rightarrow R$ be continuous on R. A point $c \in R$ is said to be a fixed point of f if $f(c)=c$ holds. Prove that the set of all fixed points of the function f is a closed set.
32. Let $I=[a, b]$ be a closed and bounded interval and a function $f: I \rightarrow R$ be continuous on I and $f(x)>0$ for all $x \in I$. Prove that there exists a positive number α such that $f(x) \geq \alpha$ for all $x \in I$.
33. A function $f:[0,1] \rightarrow R$ is continuous on $[0,1]$ and the function assumes only rational values on $[0,1]$. Prove that the function f is a constant function.
34. Let $f:[0,2] \rightarrow R$ be continuous and $f(0)=f(2)$. Prove that there exists at least a point $c \in[0,1]$ such that $f(c)=f(c+1)$.
